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Abstract

Microscopy is one of the primary sources of information on materials structure and function-

ality at the nanometer and atomic scales. The data generated through microscopy is often con-
tained in well-structured datasets, enriched with extensive metadata and sample histories, although
not always with the same level of detail or storage format. The broad incorporation of data man-
agement plans by major funding agencies ensures the preservation and accessibility of this data.
However, deriving insights from these rich datasets remains challenging due to the lack of estab-
lished code ecosystems, standardized benchmarks, and integration strategies. Correspondingly, the
efficiency of data usage is very low, and time expenditures at the analysis stage are enormous. In
addition to post-acquisition data analysis, the emergence of application programming interfaces by
major microscope manufacturers now creates opportunities for real-time ML-based data analytics
to enable automated decision making, and particularly ML-agent controlled real-time microscope
operation. Despite these opportunities, there is a significant gap in integrating the ML community
with the broader microscopy community, limiting the value that these methods bring to physics
and materials discovery and materials optimization. Hackathons address these challenges by foster-
ing collaboration between ML experts and microscopy professionals, encouraging the development
of innovative solutions that leverage ML for microscopy and preparing the workforce of the future
both for microscopy-intensive domains areas, instrument manufacturers, and ML scientists inter-
ested in real world applications for fundamental research, materials optimization, and manufac-
turing. The hackathon generated benchmark datasets and digital twins of microscopes that further
contribute to the development of the field and establish data analysis ecosystems. All the codes can
be found at GitHub(https://github.com/KalininGroup/Mic-hackathon-2024-codes-publication/
tree/1.0.0.1) and Zenodo (https://zenodo.org/records/15579940).

1. Opportunity

Microscopy and more generally physical and chemical imaging form one of the primary toolsets for
exploring matter in fields ranging from materials science and condensed matter physics to chemistry,
biology, electrochemistry, and their extensive subfields [1]. Many of the imaging tools such as electron
microscopy (EM) e-beam diffraction [2, 3], certain modalities of scanning probe microscopy (SPM)
[4, 5] and time-of-flight secondary ion mass spectrometry [6, 7] offer high-fidelity information on local
properties and compositions. Structural imaging methods such as scanning transmission EM (STEM)
[8, 9] allow visualization of the structure of matter atom by atom with few picometer precision [10],suf-
ficient for direct mapping of the chemical expansion in electrochemically active materials [11-13] and
ferroelectric [14, 15] and ferroelastic [16, 17] order parameter fields. Overall, microscopy datasets con-
tain a wealth of information on materials structure and functionalities, processing histories, fundamental
physical laws governing materials formation and property emergence, and hence are the keys for materi-
als and physics discovery and materials optimization.

Yet whereas scientific domains such as astronomy, genomics, mass-spectrometry, x-ray scattering
[18, 19], thermodynamics, and many others have by now a well-established tradition of data analysis
and integration for downstream applications, this is largely absent in microscopy. While simulation
frameworks [20-25] are ample in scanning probe and particularly EM fields, data analysis ecosystems
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are scarce and disjointed. We identify the two primary factors behind this as (a) extreme heterogeneity
of experimental microscopy workflows spanning fields from condensed matter and quantum physics

to biology and (b) resultant dearth of downstream applications. In other words, no subfield of micro-
scopy (outside of cryo-EM [26-28] and electron diffraction) has critical mass of researchers and applica-
tions within a single group required to build robust data analysis and software ecosystems. We pose that
ML/AI methods are now positioned to change this paradigm and organized the first Hackathon on ML
for Microscopy on 16—17 December 2024 (with the second planned for December 2025) to spark this
transition by bringing together microscopists from multiple communities and organizations together
with ML experts and enthusiasts to learn and build the ML-based solutions for electron and probe
microscopy.

1.1. Microscopy matters

Electron and scanning probe Microscopies are foundational tools in materials science, condensed matter
physics, chemistry, catalysis, electrochemistry, and other fields. STEM allows imaging and characteriz-
ation of materials at the nanoscale extending to atomic resolution, providing insights into the atomic
and molecular structures of materials. By now, STEM has become one of the primary tools in mul-
tiple academic and industrial research labs worldwide [9, 29-33]. The versatility of STEM is further
enhanced by its integration with techniques such as electron energy loss spectroscopy (EELS) [34-36],
which allows for precise analysis of the chemical composition [37],electronic structure [38] of materi-
als, and low energy quasiparticles [39]. The ability of STEM to image materials at nanometer and atomic
levels makes it a crucial tool for advancing understanding of the structure property relationship in wide
range of material systems. This combination is particularly beneficial in the development of new mater-
ials for technological applications, including semiconductors, solar cells [40],catalysts [41],and battery
materials [42].

Similarly, the extensive application of SPM has opened the doors to explore and modify the nano-
world. Compared to other materials characterization tools, SPM offers a desktop footprint, low cost, and
versatility in operating in multiple environments [43, 44]. It provides a wide range of functional ima-
ging capabilities, extending from basic topographic imaging [45—49] to probing of electronic [46, 50],
magnetic [45, 51, 52], mechanical [45, 46], biological [49, 53-57], and chemical [58, 59] properties.
Furthermore, SPM supports multiple spectroscopy techniques in a variety of imaging modes, enabling
comprehensive understanding and manipulation of materials at the nanoscale [60—62] and exploring
phenomena such as single-molecule chemical transformation in biomolecules, polarization switching
phenomena in ferroelectrics, and local electrochemical activity in a broad range of energy materials from
batteries to fuel cells.

1.1.1. ML for microscopy: single point data analysis

Microscopy tools now offer almost unbounded sources of information on the structure and property of
matter in the form of images, spectra, and hyperspectral imaging data. Even for simple imaging modes,
modern cameras and detectors offer capabilities up to 32k x 32k pixel images, which are already above
the capability of a human operator to usefully examine. Similarly, high-dimensional data sets that are
common across scanning probe and electron microscopies are generally outside the human ability to
comprehend and interpret, necessitating lengthy iterative analyses. Currently, the efficiency of data utiliz-
ation in microscopy is extremely low, often with 2-3 best images from a day of work being analyzed for
publications of downstream applications. The data analysis itself often relies on custom multistep work-
flows developed based on operator intuition and best practices and often take weeks to perfect. These
factors lead to enormous hidden inefficiencies and strong operator biases in microscopy use. Compared
to success stories such as molecular structure discovery by CryoEM, they also suggest the tremendous
potential to increase efficiency and impact of imaging tool on broad range of scientific disciplines if
data analysis and potentially data acquisition methods are brought to the intrinsic physical limits of
instruments.

Like other domains, the growth of data science and machine learning (ML) have stimulated interest
into big data and ML methods in EM. A number of early works have been reported in 80ies and 90ies,
including that of (co-author) Duscher [63] and the especially visionary work of Noel Bonnett [64].
However, at that time, the computational capabilities and hence potential to work with large data
volumes was limited, as were the libraries of available data analysis tools.

In the general computer science community, the ML ecosystem has been growing exponentially for
the last two decades, with new network architectures, methodologies, etc. becoming available almost
monthly. The development of deep learning in 2012 has become an inflection point that brought these
developments to the attention of the broader scientific community. As a natural sequence, disparate

3



10P Publishing

Mach. Learn.: Sci. Technol. 6 (2025) 040701 U Pratiush et al

microscopy communities started to adopt these methods for applications such as semantic segmentation
of images, unsupervised learning over spectral and imaging data, and multiple other applications. The
first sustained effort in ML for EM can be dated to the work of Watanabe and Williams [65] in ~2005.
At that time, grid-based spectroscopic measurements had become common on many tools, and the com-
putation power and codes sufficient for simple data analytics were starting to become available outside
of the computer science community. From that moment, the combination of hyperspectral imaging

and ML for physics extraction and dimensionality reduction has become the new paradigm in STEM-
EELS [35, 66, 67], 4DSTEM [68, 69], EDS [70, 71], and spectroscopic imaging techniques in SPM. The
field has been steadily developing ever since, and several comprehensive reviews on ML based analysis of
STEM—EELS data have become available recently [72, 73]. It is important to note that the range of data
analysis tasks in microscopy goes well beyond simple dimensionality reduction and image segmentation,
and requires active learning methods, integration of microscopy data for downstream physics discovery
as well as upstream experiment planning. As mentioned above, despite close similarity between analysis
tasks performed on dissimilar microscopies, currently the scientific landscape is dominated by software
developed in individual groups, typically lacking benchmarks or community-wide development. The few
exceptions reporting benchmarking for microscopy tasks have become available only recently [74].

1.1.2. ML for microscopy: active experiments

Any SPM and STEM operator is well familiar with the classical scan paradigm, and at some point,

asked the question whether rectangular scanning and grid-based hyperspectral imaging orchestrated by

a human operator are indeed the only or the best way to explore new materials. The progress of big
data methods in areas such as robotic vision [75] and autonomous driving [76] brings forth the ques-
tion as to whether similar methods [77-80] can be useful for building automated microscopes. So far,
these were preponderantly realized in the form of workflows in which execution of the codes is driven
by immediately available targets via fixed policies. For example, this can include the use of the deep con-
volutional networks or simpler image analysis tools for the identification of the a priori known object

of interest such as atoms in scanning tunneling microscopy [81],identification of single DNA molecules
[82],spectroscopy of grain boundaries [83],and ferroelectric domain walls [84—88]. These developments
are paralleled by the development of sampling methods such as compressed sensing [89]. More complex
examples entail inverse workflows, in which the goal is to discover the structural features that maximize
the desired aspect of the spectral response [90]. The number of examples of ML integration into act-

ive microscopy workflows has been growing rapidly over the last 2-3 years [60, 91-95]. However, des-
pite several early successes in active learning in SPM and STEM [68, 96], the amount of work on act-
ive learning is so far very limited, due to relatively early stages of the control application programming
interfaces (APIs), challenges of real time (as compared to post-acquisition) data analysis, and particularly
lack of workflow design tools and experience across microscopy communities.

1.2. Data and software ecosystems

Complementary to post-acquisition data analysis and implementation of on-the-fly data analytics and
active learning on individual instruments in support of single operator work, data integration across
multiple data generation facilities and teams brings additional opportunities. Below, we summarize these
in the light of the current open data mandates.

1.2.1. Data management plans (DMPs)

For almost a decade, major funding agencies, including the National Science Foundation and the
Department of Energy (DOE), have mandated the inclusion of DMPs in research proposals. A DMP is a
detailed document outlining how data generated during the research project will be handled, preserved,
and shared. It ensures that data is stored in accessible formats, with appropriate metadata to facilitate
future use by other researchers. This requirement aims to establish a culture of data sharing and trans-
parency in scientific research, implementing FAIR principles across multiple domains.

By now, there is broad acceptance within the scientific community that data should be shared online.
This practice enhances reproducibility, enables further discoveries, and maximizes the return on invest-
ment in research. However, while data sharing is slowly becoming the norm, there remains a signific-
ant need for methods that enable downstream use of this data. For fields such as x-ray crystallography,
genomics, and thermodynamics, well-established software ecosystems exist to facilitate the analysis and
utilization of shared data. Projects like the materials project and nomad (by FAIRmat) have further
improved the ease of storing, accessing and applying data and connecting it across domains, and by
now some are sufficiently advanced to be used as a part of graduate and undergraduate level education.
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For example, one of the authors regularly uses the materials project API as a part of his Intro to ML in
Materials Science course.

In contrast, the field of microscopy has yet to develop a comparable software ecosystem for the
downstream use of its data. Despite the extensive datasets generated through advanced microscopy tech-
niques, researchers often face challenges in extracting meaningful insights due to the lack of standardized
tools and benchmarks. The lack of shared data precludes development of the downstream use applica-
tions, and the lack of the latter in turn disincentivizes data sharing (note that simply sharing the data
and sharing the data in the form that encourages downstream use are very different). This gap high-
lights the need for concerted efforts to develop and integrate ML and artificial intelligence (AI) tools
specifically tailored for microscopy data to establish a virtuous circle of downstream applications and
data sharing.

1.2.2. Software ecosystem

Progress in ML in different scientific applications has been largely driven by the availability of software
frameworks, many of which were initially developed by industry (the main examples being TensorFlow
and PyTorch). Within the microscopy domain, given the strong heterogeneity of the space, packages exist
for certain sub-domains but are virtually all utilizing classical/traditional analysis methods. These pack-
ages include efforts in electron microcopy, such as hyperspy [97],and in atomic force microscopy, such
as with TopoStats [98]. However, packages to develop ML workflows for microscopy datasets are limited
(notable examples include AtomAI and GPax [99]).

In parallel to development of the specialized ecosystems for microscopy data analysis, certain suc-
cesses have been achieved with the broad use tools developed by ML community. For example, GUIs
that can be easily used to train models for image segmentation and object detection abound, such as
iLastik [100] and RoboFlow [101],are available. The recent push towards foundation models has also
seen the deployment of universal segmentation models, such as the ‘SAM’ and ‘SAM2’ model from
META [102]. The limitation of these is that they are optimized for real-space imaging from ordinary
cameras, and do not always function as expected on microscopy datasets (e.g. atomically resolved images
will be identified as chainmail or cloth).

Perhaps more than software codebases, a fundamental challenge is that benchmarking a new ML
workflow or architecture remains difficult in the current ecosystem. We require better digital twins
and ‘ground truth’ datasets, on which typical applications such as segmentation, reconstruction, and
more advanced human-in-the-loop workflows can be reliably tested to gauge the performance of newly
developed algorithms.

1.2.3. APIs

APIs are the key bridges between microscopy and codes that enable the application of ML for automated
microscopy. Only a few years ago these were generally lacking across microscopy manufacturers. While
there were some exceptions, such as Nion [103] in EM and Nanonis [104] in SPM, what APIs existed
were often not well known or well documented, and third party tools such as SerialEM (https://bio3d.
colorado.edu/SerialEM/) or DigitalMicrograph(www.dmscripting.com/publications.html) were frequently
used. Fortunately, this trend is now changing drastically, with both availability and functionality being
improved.

For SPM, the programming interface API from SpecsGroup [105] is built for LabView [106] and
requires another translation layer to work with Python and ML. The Python API from NanoSurf [107]
offers direct communication to Python codes, but still does not provide full control and data access. On
the user side, there have also been attempts to interface microscopy with ML with APIs. The AEcroscopy
API [108] developed at ORNL enables the full control of SPM manufactured by Asylum Research [109]
but requires custom hardware. The DeepSPM API [110] is based on the programming interface by
SpecsGroup and thus only works Nanonis controllers. While the official APIs for SPMs are still scarce
and come with limited control and data I/O for their microscopes, there is a rapid trend to their emer-
gence and operationalization, and corresponding pressure from the customer community to build and
share the in-house versions.

The APIs have similarly become more advanced in the EM community over the last several years.
Companies such as Thermo Fisher Scientific [111], Nion [103], and JEOL [112] have recently introduced
APIs that allow for hardware control through code. However, there is a need to increase community
awareness of these tools and their potential benefits for ML. Similarly, the APIs built with different cus-
tom hardware and built for different brands prevent the share of ML workflows across the microscopy
community. This hackathon will play a pivotal role in fostering this understanding and adoption and
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stimulate the development of pure-software generic API that works universally on different microscopy
has been long awaited and can promote the development of automated microscopy.

1.3. Summary and needs

Opverall, the microscopy community has high anticipations for ML and has demonstrated multiple use
cases for the applications of ML, both at the stage of post-acquisition data analysis, real time data ana-
lytics, and even ML/AI driven decision making during the experiment. However, these efforts are largely
fragmented across the community, prototype workflows are developed within individual groups, and
generally do not form large projects and software ecosystems required for benchmarking, cross-task and
cross-domain use, and generally mature downstream applications.

The outstanding need in the field now is to integrate the emerging efforts in ML for scanning probe
and EM. This is possible since the basic principles of operation, instrument control hyper languages,
and many data analysis workflows are similar between electron and scanning robe techniques. Similarly,
there is a clear opportunity to bridge the ML and microscopy communities, where the availability of
APIs offers an advantage for real-world testing of the ML algorithms and microscope serving a proto-
type model for much more complex decision making and real-world operation environments such as
robotics. The proposed hackathon aims to address this need by engaging students to develop a new ML-
conversant workforce in microscopy, start building consensus on benchmark datasets, standard imple-
mentations, and approaches, developing multi-institution partnerships and a nexus of talent to seed
future collaboration and development, and make a value proposition for manufacturers, community and
funding agencies toward broader adoption.

Note based on the discussion with the reviewers’: sections corresponding to value proposition of such events in
the community, organization details and winning teams/prizes has been moved to the supplementary part of the
manuscript.

2. Project summaries

The participants submitted ~20 projects, with a total of 80 active participants. The full summaries,
codes, and YouTube presentations are available on the hackathon website. Here, we provide general over-
view of the submitted projects. The Appendix has individual writeups of each project. Figure 1 shows
some example workflows realized in the hackathon projects.

2.1. Image segmentation and shape analysis (Teams 3, 8, 10, 11)

General discussion on projects in this section

Microscopy images allow us to visualize structures at micro, nano, and atomic scales, such as grain
structures, nanoparticles, and defects in materials. These structures can affect the mechanical, electrical,
and chemical properties of materials, as such, understanding these structural characteristics are crucial
for optimizing and improving materials. However, traditionally it often relies on manual identification
of interesting structures and manual analysis of structural correlations, which are time-consuming and
prone to human bias. To overcome these limitations, four projects in this hackathon have integrated ML
into microscopy analysis workflows to enable automated detection, classification, and analysis of struc-
tural features with enhanced efficiency and accuracy. Welborn et al applied cell segmentation model to
automate the detection of grain structures in AFM images of halide perovskite thin films. The cell seg-
mentation model cellSAM [113] was originally developed for biological cells but proved effective for
grain structure analysis in functional materials. Additional efforts were made to sorting grains based on
size and nearest neighbors to discover regions of interest for further zoom-in imaging measurement.
Kiefer et al developed a python package, named micrography, to analyze EM images in order to find
regions of interest. By constructing a graph representation of atom positions and their nearest neighbors,
the project aimed to learn more meaningful relationships about materials and predict unseen informa-
tion to guide the microscope focus on regions of interest. Pinto et al applied ML models to automatically
identify the locations of nanoparticles and integrated a microscope navigator to actively search nano-
particles in the sample. They also developed an intuitive interface allowing users to view the nanoparticle
search results in real time. By automating these tasks, the system significantly reduced the manual effort
required in nanoparticle research. In another project, Wang et al developed a workflow for real-time
TEM image analysis of nanoparticles. A U-Net segmentation model was applied to detect nanoparticles.
The workflow enabled real-time analysis of nanoparticle area, aspect ratio, convexity, etc., followed by
unsupervised classification of contour shapes. A common theme among these projects is the emphasis
on streamlining features of interest identification in microscopy images. The integration of ML not only
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Figure 1. Example workflows. (a) Project 2: conditional U-Net architecture for predicting diffraction patterns incorporating
thermal diffuse scattering. (b) Project 1: reward-driven image analysis workflow for automated phase mapping in polycrystalline
Pd-Se. (¢) Project 19: image-to-graph model for structure discovery from AFM images.
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accelerates the identification of these features but also enables more sophisticated analysis, such as shape
classification, defect prediction, and automated search experiment.

Highlight project in this section (Honorable Mention by judges) Automating AFM through model-driven
image segmentation and classification:

Conventionally, microscopists rely on their expertise and intuition to steer a session—manually adjust-
ing the acquisition region when interesting features appear on the monitor to capture higher-resolution
data. In Automating AFM through model-driven image segmentation and classification (appendix No. 3),
the team combined a foundation model and modern workflow tooling to reduce manual intervention
and human bias during data collection. Leveraging cellSAM [114]—a segmentation model originally
developed for identifying cells in optical microscopy—the team delineated grain structures in AFM
images of halide perovskite thin films, whose granular morphology resembles clusters of cells. Post-
processing routines sorted segmented grains by size, identified regions with high interface density, and
extracted statistical descriptors of grain populations, enabling targeted follow-up measurements. These
capabilities—spanning AFM data acquisition through pycroscopy’s DTMicroscope(https://github.com/
pycroscopy/DTMicroscope) package, segmentation with cellSAM, analysis, and automated region-of-
interest selection—were deployed as containerized operators within the interactEM (https://github.com/
NERSC/interactEM) workflow platform. As the microscope streams data between operators, the results
were visualized in interactEM’s web-based interface, enabling both facile monitoring of the autonomous
experiment and adjusting post-processing parameters in real time.

2.2. Optimization of image analysis workflows (Team 1, 4, 14)

General discussion on projects in this section

Sub-images of microscopy data are frequently used as inputs for ML analysis, where data augmentation
(e.g. image cropping) is crucial for ML performance. Appropriate sub-image parameters, such as window
size and step size, are essential for ensuring that relevant features are preserved while minimizing noise
and redundancy. Three projects in this hackathon systematically investigated and optimized sub-image
parameters to improve analysis accuracy. Barakati et al utilized a reward-driven optimization method
to balancing compactness and separation of user defined objectives for classification. By analyzing the
Pareto front, the authors can identify a window size providing best results of phase separation in a 2D
polycrystalline Pd-Se film. Similarly, Guinan et al also optimized window size and step size to ensure
effective classification of ferroelectric domain structures in STEM images of BiFeO3. Additionally, Wen
et al analyzed the effects of window size and step increment on the predictive accuracy of im2spec to
enhance the structure-property prediction.

Highlight project in this section (Student Council Award) Reward based segmentation:

phase mapping of 2d polycrystalline pd-se phases:

The rapid progress of electron and scanning probe microscopies has created an urgent need for image
analysis methods that can operate in real time, keeping pace with high-throughput and atomically
resolved experiments. As an illustrative case, phase separation in polycrystalline thin films can be studied
with DCNN-based supervised learning or unsupervised models: the former provides strong segmentation
but depends on labeled datasets and is sensitive to distribution shifts, while the latter avoids labeling yet
relies on complex, hyperparameter-heavy pipelines such as FFT decomposition or matrix factorization.
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To establish a reliable basis for real-time image analysis, a reward-driven optimization framework was
developed and validated using atomic-resolution STEM data of 2D polycrystalline Pd—Se thin films as a
model system. The workflow employs sparse linear unmixing of FFT-transformed patches, followed by
non-negative matrix factorization with progressively imposed sparsity to isolate dominant phases. Crucial
hyperparameters including window size, sparsity level, and number of phases are dynamically tuned
through physics-informed reward functions that balance objectives such as phase compactness and min-
imal overlap. By evaluating solutions along the Pareto front, the method achieves robust discrimination
of structural phases and accurate identification of boundaries and interfaces. The framework developed
in this project therefore shows strong potential for advancing real-time image analysis in microscopy,
offering an explainable alternative to conventional supervised and unsupervised models, and providing a
transferable strategy for automated decision-making across diverse imaging modalities.

2.3. Artefacts in SPM (Team 8 and 16)

General discussion on projects in this section

Unlike EM that uses an electron beam to scan samples, SPM uses a physical tip to scan samples. In this
case, tip artifacts significantly impact the accuracy of SPM characterization, as these artifacts arise due to
imperfections of probe tip (e.g. asymmetric or double tips) can obscure fine structural details, causing
convolution effects that blur, duplicate, or alter the perceived surface structures and leading to misinter-
pretations of results. To address these problems, two projects in this hackathon leveraged ML approaches
to reverse tip effect and reconstruct original surface structures. Nick et al trained three ML models

with a mean absolute error loss and/or a structural similarity index loss to learn and reverse the dis-
tortions introduced by imperfect tips. They explored the feasibility of ML-based approach on tip shape
estimation and image reconstruction. Narasimha et al tested multiple ML architectures for tip artifacts
removal, including a U-Net model, a hybrid ResNet-UNet autoencoder, as well as point spread functions
(PSFs) to predict tip conditions. The U-Net model performs well for moderate distortions. However, it
over-sharpens the image or recovers wrong features under conditions with extreme bluntness or strong
double-tip effects. The hybrid autoencoder struggles for reconstructing specific structures (e.g. spiral pat-
terns). Both hybrid autoencoder and PSF approaches struggle for double tip effects. While both projects
demonstrate success in reducing distortions, challenges remain in ensuring generalizability to reverse tip
artifacts under diverse experimental conditions.

Highlight project in this section-Removal of tip-shape induced artifacts in AFM images using deep
learning:

AFM provides critical nanoscale structural information, but the fidelity of its topographic images is often
compromised by probe-tip artifacts such as bluntness, asymmetry, and double-tip effects. These distor-
tions obscure fine surface features and limit quantitative interpretation, motivating the need for robust
deconvolution approaches. In this project, we develop a deep learning—based workflow for tip-shape arti-
fact removal, combining UNet and ResNet—UNet architectures with a novel PSF prediction step. Using

a large dataset of simulated tip distortions and experimental AFM topographies, our models learn to
recover ground-truth surfaces with high fidelity. Incorporation of PSF prediction into the deconvolu-
tion pipeline significantly improves reconstruction quality under severe tip degradation, outperform-

ing conventional image-only models. This framework enables reproducible, automated correction of
AFM images, enhancing data quality and enabling more reliable nanoscale analysis across a wide range
of materials systems, and can be readily extended to other scanning probe techniques such as STM or
KPFM for improved image reconstruction.

2.4. Physics-based analytics (Team 2, 5, 6)

General discussion on projects in this section

Like the tip conditions that are unseen in real-time experiments, many scientific problems struggle with
challenges of analyzing crucial properties that are unmeasurable due to practical limitations or resource-
intensive to assess using traditional methods. In microscopy experiments, for example, inelastic scattering
in diffraction requires computationally expensive models to simulate and ferroelastic—ferroelectric correl-
ations are too subtle to measure directly. To address this challenge, two projects in this hackathon lever-
age ML in combination with measurable data to infer these otherwise inaccessible properties. Yoon et al
applied a U-Net model to predict inelastic scattering patterns in TEM using elastic diffraction patterns
and atomic number distributions. Although the method requires further testing across diverse condi-
tions, the results demonstrate the potential of ML to enable cost-effective prediction for inelastic scatter-
ing by learning the relationship between elastic and inelastic diffraction patterns. Bulanadi et al applies a
generative adversarial network (GAN) to infer ferroelastic—ferroelectric domain structures from standard
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AFM topography. Conventional piezoresponse force microscopy (PFM) measurements of ferroelectric
domain structures require the application of a voltage to the sample, which can introduce unwanted
modifications. GAN bypasses this issue by learning structural correlations between AFM topography
and PFM imaging channels. Additionally, Addison-Smith et al applied a dynamic mode decomposition
customized model with VampNets3 in high-speed AFM to map molecules below the substrates. These
projects demonstrate how ML can offer new insights into material properties that are too complex or
impractical to measure directly in traditional ways.

Highlight project in this section(1st Prize winner) GANder: Ferroelastic—Ferroelectric Domains
Observed by Image-to-Image Translation:

Ferroelectric and ferroelastic materials are used extensively in transducers and sensors, but PFM, which
is used in their study, is susceptible to noise, crosstalk, and irreversible sample damage through ferro-
electric switching or charge injection. Methods that could classify ferroelectric domains or polarizations
with neither external bias, nor tip—sample contact, could therefore be useful for research in ferroelectric
materials. In ferroelectric—ferroelastic domains, where the ferroelectric polarization is directly linked to
material structure, purely topographic information has the potential to encode information about fer-
roelectric properties. A GAN [115], which creates synthetic outputs through alternating competition
between a discriminator model and a generator model, is thus trained on PFM data from a series of
lead titanate samples [116] showing both purely ferroelectric c-domains (with an out-of-plane polariz-
ation and out-of-plane tetragonal distortions), and correlated ferroelectric—ferroelastic a-domains (with
an in-plane polarization and similarly in-plane tetragonal distortions). When the GAN is used to con-
vert experimental topography data to a synthetic piezoresponse amplitude output, orthogonal striations
appear corresponding to the ferroelectric—ferroelastic a-domains observed in experimental piezoresponse
amplitude data. However, oppositely polarized c-domains, which express identical tetragonal distortions
to one another, and are prominent in experimental piezoresponse amplitude data but not experimental
topography data, are not typically visible in the synthetic piezoresponse amplitude output. The GAN
developed in this project therefore shows promise in extracting specifically ferroelectric—ferroelastic cor-
relations in lead titanate, without requiring external bias or charge injection.

2.5. Automated experiment and LLM integration (Team 12, 15, 18)

General discussion on projects in this section

Language models have shown the potential to enhance microscopy experimentation [117]. Three pro-
jects in this hackathon also showcase the application of LLMs in microscopy. Yin et al developed an
AutoScriptCopilot leveraging LLMs and vision language models for automation of TEM workflows.

The AutoScriptCopilot allows users to dynamically adapt experiment parameters based on image qual-
ity assessment with the assistance of foundational AI models, balancing automation and expert interven-
tion. Bazgir et al developed MicroscopyLLM-Bench that leverages state-of-the-art vision-language models
to automate key microscopic imaging tasks, such as object detection, classification, and feature analysis.
This approach reduces manual annotation efforts and accelerates analysis workflows of microscopy-based
research. In addition, Kalinin et al used LLM to suggest possible descriptors of image patches for feature
extraction.

Highlight project in this section (2nd Prize winner) AutoScriptCopilot: Agentic Workflow for TEM
Experiment Automation:

AutoScriptCopilot implements a state machine based agentic workflow that couples Thermo Fisher
Scientific’s AutoScript instrument API with an orchestration layer [118] to coordinate instrument con-
trol, human inputs, foundation model assisted parameter recommendation, and image quality assess-
ment. The system initializes the microscope and verifies readiness, executes acquisition under recommen-
ded settings, and then evaluates focus and astigmatism to detect drift or misalignment. When subop-
timal quality is detected, it returns to alignment and retunes parameters. Decision nodes enable expert
confirmation and error handling without interrupting automation, with states, decisions, and metadata
logged to increase visibility and reproducibility. This modular graph-node design facilitates integration of
Al with experimentation and has the potential to automate TEM experiment control and reduce ad hoc
trial-and-error.

3. Summary

The hackathon served as a dynamic platform for the enhancement and improvement of scientific, engin-
eering, and educational activities in several key ways. By bringing together experts in ML, EM, and SPM,
the event fostered the interdisciplinary collaboration that is essential for addressing complex scientific
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challenges. Participants built teams and worked on real-world problems, such as robust segmentation,
deionizing, and reconstruction of microscopy data, which are critical for advancing the field of nanos-
cience. The hackathon catalyzed the development of new ML tools and techniques specifically tailored
for microscopy, enabling more accurate and efficient data analysis, which is fundamental to scientific
discovery and innovation.

The hackathon pushed the boundaries of engineering by encouraging participants to develop and
implement ML algorithms that can be integrated into microscopy hardware. This integration will lead
to the creation of more advanced, autonomous instruments capable of real-time data processing and
decision-making. Such innovations will not only enhance the capabilities of existing microscopy techno-
logies but also pave the way for the development of next-generation instruments that can operate with
greater precision and efficiency.

Finally, the hackathon contributed to educational activities by providing a hands-on, immersive
learning experience for participants. It served as a unique training ground for students, early-career
researchers, and professionals, offering them the opportunity to apply theoretical knowledge in a prac-
tical setting. The mentoring sessions, workshops, and tutorials helped participants build valuable skills
in ML, data science, and microscopy. Additionally, the hackathon produced open-source resources, such
as code libraries and educational materials, that can be widely disseminated and used for teaching and
training in academic and research institutions. Most importantly, the hackathon laid the foundation for
the development and use of digital twins, transitioning AI/ML from a post-acquisition data-analysis tool
to an active participant in the research process.
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